Configurable
Ni Temperature Transmitter DT 45400

C

DT 45400

- Before Startup

When operating the signal converter, certain parts
! of the module can carry dangerous voltage of the module can carry dangerous volage!
lgnoring the warnings can lead to serious injury
and/or cause damage!

The signal converter should only be installed and put into operation by qualified staff. The staff must have studied the warnings in these operating instructions thoroughly.

The signal converter may not be put into operation if the housing is open.
In applications with high operating voltages sufficient distance and isolation as well as shock

Safe and trouble-free operation of this device can only be guaranteed if transport, storage and an maintenance are carried out with care

Appropriate safety measures against electrostatic discharge (ESD) should be taken during range selection and assembly on the transmitter.

Short description

The configurable transmitter is designed for operating various N sensors. The measured value
into a current or voltage signal.
The configuration can be done either via DIP switch or via an USBinterface with the PC configuration program DRAGOset. A wid

The 3 -way isolation guarantees reliable decoupling of the sensor circuit from the processing circuit and prevents linked measurement
circuits from influencing each other. The auxiliary power can be supplied via the connection terminals or type-specific via the optional In-Rail-Bus connector (see accessories).

- Configuration and startup

Configuring with DIP switch
Use the DIP switches to configure the device, according to table.
Configuring with software DRAGOset
Use the software DRAGOset to configure the device. Changes to the configuration and parameterization data can be performed both during operation with a connected measuring circuit and in a

The DRAGOset software is available for download free of charge at www.drago-automation.de
The device is equipped with a programming socket on the front. Use the DRAGOset USB Converter only for connecting the device to the parameterization DIP switch S1-1, 2, 3 have to be set ON!
Commissioning Function
The output supports a fast and simple testing of cabling and connection utton locam devices or measuring adjustment. Press the function button located behind the front cover for longer than 3 seconds. The (quick double off).
Output value:

Output	0%	$\boldsymbol{\pi}$	50%	$\boldsymbol{\pi}$	100%	\boldsymbol{y}	50%	\boldsymbol{y}										
Time	5 s	3 s	3 s	3 s	5 s	3 s	3 s	3 s		Time	5 s	3 s	3 s	3 s	5 s	3 s	3 s	3 s
:---	:---	:---	:---	:---	:---	:---	:---	:---										
The stepped keystone signal is output continuously. Exit the									The stepped keystone signal is output continuously. Exit the									

Commissioning Function by pressing the button again for 3 seconds Commissioning
or power off.

- Mounting, Electrical Connection

The transmitter is mounted on standard 35 mm DIN rail

Terminal assignments

Input						
Sensor	Measuring Range	Standard	Characteristic			
Ni100	$-50 . . .+250{ }^{\circ} \mathrm{C}$	DIN 43760	тК6180			
Ni200	$-50 \ldots+250^{\circ} \mathrm{C}$	DIN 43760	TK6180			
Ni500	$-50 . . .+250{ }^{\circ} \mathrm{C}$	DIN 43760	тK6180			
Ni1000	$-50 . . .+250{ }^{\circ} \mathrm{C}$	DIN 43760	TK6180			
Ni120 (TK6720)	$-50 . . .+250{ }^{\circ} \mathrm{C}$		тК6720			
Ni1000 (TK5000)	$-50 \ldots+250{ }^{\circ} \mathrm{C}$		TK5000			
Ni1000 (TK6370)	- $50 \ldots+250{ }^{\circ} \mathrm{C}$		TK6370			
Range Setting	calibrated steps of $25^{\circ} \mathrm{C}$, configurable via DIP switch or USB interface					
Measuring span min.	25 K					
Measuring error	$<0.2 \mathrm{~K}+0,05 \%$ meas. val.					
Sensor connection	4 -wire, 3 -wire, 2 -wire					
Sensor current	0.2 mA					
Cable resistance	$<100 \Omega$ per wire for 4 - and 3-wire connection					
Output	Current ${ }^{\text {l }}$		Voltage			
Output signal	$\begin{aligned} & 0 \ldots .20 \mathrm{~mA} \\ & 4 \ldots 20 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 0 . \ldots 10 \mathrm{~V} \\ & 0 . \ldots 5 \mathrm{~V} \\ & \hline \end{aligned}$				
Load	$4 . .20 \mathrm{~mA}$ 0 $\leq 12 \mathrm{~V}(600 \Omega \mathrm{at} 20 \mathrm{~mA})$ \leq		$\leq 5 \mathrm{~mA}(2 \mathrm{k} \Omega$ at 10 V$)$			
Residual ripple	$<10 \mathrm{mV}$ ms					
Transfer range	0 to $102.5 \%(3.8$ to 20.5 mA at output 4 to 20 mA$)$Transfer characteristic rising / falling					
Error signal/message	Sensor-/ wire break, error signal configurable					
General data						
Transmission error	<0.1\% full scale					
Measurement rate	$4 / \mathrm{s}$					
Response time 999	250 ms					
Test voltage	$3 \mathrm{kV}, 50 \mathrm{~Hz}, 1 \mathrm{~min}$. Input against output against power supply					
Working voltage ${ }^{3}$ (basic insulation)	600 V AC/DC for overvoltage category II and contamination class 2 acc. to EN 61010-1					
Protection against dangerous body currents ${ }^{3}$	Protective Separation by reinforced insulation acc. to EN $61010-1$ up to 300 V AC/DC for overvoltage category 11 and contamination class 2 betweeninput and output and power supply.					
Ambient temperature	Operation $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-13\right.$ to $\left.+158^{\circ} \mathrm{F}\right)$ Transport $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}\left(-40\right.$ to $\left.+185^{\circ} \mathrm{F}\right)$ and storage					
Power supply	$24 \mathrm{VDC} \quad 9.6 \mathrm{~V} \ldots 31.2 \mathrm{~V}$, approx. 0.8 W					
EMV ${ }^{\text {+ }}$	EN 61326-1					
MTBF	353 years acc. to SN 29500 (stationary continuous operating, average ambient temperature $40^{\circ} \mathrm{C}$)					
Construction	$6.2 \mathrm{~mm}\left(0.244^{\prime \prime}\right)$ housing, protection type: IP 20 mounting on 35 mm DIN rail acc. to EN 60715					
Connection terminals (see order information)	- Screw terminals (plus-minus clamp screws) - Cage clamp terminals (Push-In)					
Weight	Approx. 70 g					
1) Factory setting: Input: Ni100, $0 \ldots 100^{\circ} \mathrm{C}, 4$-wire-sensor connection Output: $0 \ldots 20 \mathrm{~mA}$, Characteristic rising, error signal 22 mA 2) Average $T C$ related to full scale value in specified operating temperature range, reference temperature $23^{\circ} \mathrm{C}$ 3) As far as relevant the standards and rules mentioned above are considered by development and production of our devices. In addition relevant assembly rules are to be considered by installation of our devices in other equipment's. For applications with high working voltages, take measures to prevent accidental contact and make sure that there is sufficient distance or insulation between adjacent situated devices. 4) Minor deviations possible during interference						

N Order Information	
Ni Temperature Transmitter	Order No.
Screw terminals	DT 45400 S
Screw terminals, In-Rail-Bus	DT 45400 B
Push-In terminals	DT 45404 S
Push-In terminals, In-Rail-Bus	DT 45404B

- Dimensions

Connection	Screw terminals	Push-In termina
Wire cross-section stranded ferruled	$0.5 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2}$ AWG 20-14	$0.5 \mathrm{~mm}^{2}-1.5 \mathrm{~mm}^{2}$ AWG 20-16
Wire cross-section solid wire	$0.5 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2}$ AWG 20-14	$0.5 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2}$ AWG 20-14
Striped length	$8 \mathrm{~mm} / 0.3 \mathrm{in}$	$8 \mathrm{~mm} / 0.3 \mathrm{in}$
Screw terminal torque	$0.6 \mathrm{Nm} / 5 \mathrm{lbf}$ in	-

IMITED WARRANTY

RAGO Automation GmbH hereby warrants that the Product will be free from defects in materials or workmanship for a period of five (5) years from the date of delivery ("Limited Warranty"). This Limited Warranty is limited to repair or replacement at DRAGO's option and is effective only for the
first end-user of the Product. This Limited Warranty applies only if the Product:

1. is installed according to the instructions fumished by DRAGO;
2. is connected to a proper power supply
3. there is no evidence of tampering, mishandling, neglect accidental damage, modification or repair without the approval of DRAGO or damage done to the Product by anyone other than DRAGO

Delivery conditions are based upon the GENERAL Deivery conditions are based upon the „GENERAL
CONDITIONS FOR THE SUPPLY OF PRODUCTS AND SERVICES OF THE ELECTRICAL AND ELECTRONICS NDDSTRY" recommended by the Zentralverband

Subject to change!
DRAGO Automation GmbH
Waldstrasse 86-90
13403 BERLIN
GERMANY
Phone: \quad +49 (0)30 409982 -0
E-Mail: info@drago-automation.de
Internet: www.drago-automation.de

Set the input and output ranges with DIP switches $(\bullet=\mathrm{ON})$ as indicated in the following table:

- = ON, Factory settings: all switches in position OFF

LED indication

The transmitter has a green and a
red/yellow LED on front panel.

LED		Announcement
green	continuous	Power LED, normal operation
green	flashing	Over/under range on input
yellow	slow double flashing	Commissioning Function active
red	flashing	Sensor break
red	double flashing	Configuration error
red	continuous	Device error, replacement is necessary

End Value
DIP S2-

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	${ }^{\circ} \mathbf{C}$	${ }^{\circ} \mathrm{F}$
	\bullet	\bullet				-25	-13
\bullet	\bullet	\bullet				0	32
			\bullet			25	77
\bullet			\bullet			50	122
	\bullet		\bullet			75	167
						$\mathbf{1 0 0}$	212
\bullet	\bullet		\bullet			125	257
		\bullet	\bullet			150	302
\bullet		\bullet	\bullet			175	347
	\bullet	\bullet	\bullet			200	392
\bullet	\bullet	\bullet	\bullet			225	437
				\bullet		250	482

Error diagnostic function on output

Characteristic	Error	Output	Underrange	Overrange	Sensor break / invalid setting
$\begin{aligned} & \hline \text { rising } \\ & \text { S2-9 OFF } \end{aligned}$	$\begin{gathered} \text { signalize } \\ \text { S2-10 = OFF } \end{gathered}$	$\begin{gathered} 0 \ldots 20 \mathrm{~mA} \\ 4 \ldots 20 \mathrm{~mA} \\ 0 \ldots 10 \mathrm{~V} \\ 0 \ldots 5 \mathrm{~V} \\ \hline \end{gathered}$	$\begin{gathered} \hline 0 \mathrm{~mA} \\ 3.8 \mathrm{~mA} \\ 0 \mathrm{~V} \\ 0 \mathrm{~V} \\ \hline \end{gathered}$	$\begin{gathered} 20.5 \mathrm{~mA} \\ 20.5 \mathrm{~mA} \\ 10.25 \mathrm{~V} \\ 5.125 \mathrm{~V} \end{gathered}$	$\begin{gathered} \hline 22 \mathrm{~mA} \\ 22 \mathrm{~mA} \\ 11 \mathrm{~V} \\ 5.5 \mathrm{~V} \end{gathered}$
	not signalize $\mathrm{S} 2-10=\mathrm{ON}$	$\begin{gathered} 0 \ldots 20 \mathrm{~mA} \\ 4 \ldots 20 \mathrm{~mA} \\ 0 \ldots 10 \mathrm{~V} \\ 0 \ldots 5 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \mathrm{~mA} \\ 4 \mathrm{~mA} \\ 0 \mathrm{~V} \\ 0 \mathrm{~V} \\ \hline \end{gathered}$	$\begin{gathered} 20 \mathrm{~mA} \\ 20 \mathrm{~mA} \\ 10 \mathrm{~V} \\ 5 \mathrm{~V} \\ \hline \end{gathered}$	$\begin{gathered} 0 \mathrm{~mA} \\ 4 \mathrm{~mA} \\ 0 \mathrm{~V} \\ 0 \mathrm{~V} \\ \hline \end{gathered}$
$\begin{aligned} & \text { falling } \\ & \text { S2-9 ON } \end{aligned}$	signalize $\mathrm{S} 2-10=\mathrm{OFF}$	$\begin{gathered} 20 \ldots 0 \mathrm{~mA} \\ 20 \ldots 4 \mathrm{~mA} \\ 10 \ldots 0 \mathrm{~V} \\ 5 \ldots 0 \mathrm{~V} \end{gathered}$	$\begin{gathered} 20.5 \mathrm{~mA} \\ 20.5 \mathrm{~mA} \\ 10.25 \mathrm{~V} \\ 5.125 \mathrm{~V} \\ \hline \end{gathered}$	$\begin{gathered} 0 \mathrm{~mA} \\ 3.8 \mathrm{~mA} \\ 0 \mathrm{~V} \\ 0 \mathrm{~V} \\ \hline \end{gathered}$	$\begin{gathered} 22 \mathrm{~mA} \\ 22 \mathrm{~mA} \\ 11 \mathrm{~V} \\ 5.5 \mathrm{~V} \\ \hline \end{gathered}$
	not signalize $\mathrm{S} 2-10=\mathrm{ON}$	$\begin{gathered} 20 \ldots 0 \mathrm{~mA} \\ 20 \ldots 4 \mathrm{~mA} \\ 10 \ldots 0 \mathrm{~V} \\ 5 \ldots 0 \mathrm{~V} \end{gathered}$	$\begin{gathered} 20 \mathrm{~mA} \\ 20 \mathrm{~mA} \\ 10 \mathrm{~V} \\ 5 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \mathrm{~mA} \\ 4 \mathrm{~mA} \\ 0 \mathrm{~V} \\ 0 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0 \mathrm{~mA} \\ 4 \mathrm{~mA} \\ 0 \mathrm{~V} \\ 0 \mathrm{~V} \end{gathered}$

