Shunt/mV Isolation Amplifier DS 75000

C

Read these instructions before using the product and retain for future infomation.

DS 75000

Before Startu

When operating the signal converter, certain parts ! of the module can carry dangerous voltage. ignoring the warning
and/or cause damage!

The signal converter should only be installed and put into operation by qualified staff. The staff mus have studied the warnings in these operating instructions thoroughly.
The signal converter may not be put into operation if the housing is open.

In applications with high operating voltages sufficient distance and isolation as well as shock

Safe and trouble-free operation of this device can only be guaranteed if transport, storage and installation are carried out correctly and operation an maintenance are carried out with care.

Appropriate safety measures against electrostatic discharge (ESD) should be taken during range selection and assembly on the transmitter.

Short description

The Shunt $/ \mathrm{mV}$ Isolation Amplifier is used for separation and conversion of bipolar and unipolar mV signals such as those
frequently used for current measuring with shunt resistors or other applications with low sensor voltage.
The input and output range can be set by using DIP switch and due to the calibrated range selection no further adjustment is necessary

A switchable compensation of the measuring range can be performed at the Zeros an be adapted to the measurement task by using the DIP Switch.
The 3 -way isolation guarantees reliable decoupling of the sensor circuit from the processing circuit and prevents linked measurement
circuits from influencing each other. The Protective Separation with high isolation level provides protection for personnel and downstream devices against impermissibly high voltage.
The auxiliary power can be supplied via the connection terminals or type-specific via the optional In-Rail-Bus connector (see
accessories). A green LED on the front of the unit has been provided to monitor the power supply.

- Functioning

The input signal is modulated and then electrically decoupled using a transformer. The isolated signal is then made available at the output, demodulated, filtered and amplified.

- Settings

Set the input and output ranges with DIP switch as indicated in the following table:

Input	S1-					Output		S2-					
		2			516				2	3		5	6
$\pm 60 \mathrm{mV}$	-						$\pm 10 \mathrm{~V}$	-			-		
$0 \ldots . .60 \mathrm{mV}$			-				$0 \ldots 10 \mathrm{~V}$	-	-				
$\pm 100 \mathrm{mV}$	-		$\bullet \cdot$				$2 \ldots 10 \mathrm{~V}$	-	-			-	
$0 . .100 \mathrm{mV}$							$\pm 5 \mathrm{~V}$	-	-	-	-		
$\pm 150 \mathrm{mV}$	-						$0 \ldots 5 \mathrm{~V}$	-	-	-			
$0 . .150 \mathrm{mV}$		-					$1 \ldots 5 \mathrm{~V}$	-	-	-		-	
$\pm 250 \mathrm{mV}$	-						$\pm 20 \mathrm{~mA}$				-		
$0 . . .250 \mathrm{mV}$		-	\bullet	-			$0 \ldots 20 \mathrm{~mA}$						
$\pm 300 \mathrm{mV}$	-						$4 \ldots 20 \mathrm{~mA}$					-	
$0 . . .300 \mathrm{mV}$							$\pm 10 \mathrm{~mA}$			-	-		
$\pm 500 \mathrm{mV}$	-						$0 \ldots 10 \mathrm{~mA}$			-			
$0 . . .500 \mathrm{mV}$			-				$2 \ldots 10 \mathrm{~mA}$			-		-	
Zero potentiometer active					-		Bandwidth 8 k	Hz					
Span potentiometer active							Bandwidth 100	0 Hz					-
Factory settings: all switches in position OFF $\quad \bullet=$													

- Mounting, Electrical Connection

The isolation transmitter is mounted on standard 35 mm DIN rail

Terminal assignments			
1	Input $\mathrm{mV}+$	5	Output +
2	Input mV -	6	Output -
3		7	Power supply
4		8	Power supply

Input								
${ }_{\text {Input signal }}^{\text {(caibrated switchable) }}$	$0 . . .60 \mathrm{mV}$	$\pm 60 \mathrm{mV}$	0... 100 mV					
	0... 150 mV	$\pm 150 \mathrm{mV}$	$0 . . .250 \mathrm{mV}$	$\pm 250 \mathrm{mV}$				
		$\pm 300 \mathrm{mV}$						
Input resistance	$\geq 100 \mathrm{k}$,							
Overload	$\leq 30 \mathrm{~V}$							
Output	Voltage	Current						
Output signal (calibrated switchable)	$\pm 10 \mathrm{~V}$	$\pm 5 \mathrm{~V}$	$\pm 20 \mathrm{~mA}$	± 10				
	$0 \ldots 10 \mathrm{~V}$	$0 \ldots 5 \mathrm{~V}$	$0 \ldots 20 \mathrm{~mA}$. 10 mA				
	$2 \ldots 10 \mathrm{~V}$	$1 . .5 \mathrm{~V}$	4...20 mA	2...10 mA				
Load	$\leq 5 \mathrm{~mA}(2 \mathrm{k} \Omega$ at 10 V$)$		$\leq 12 \mathrm{~V}(600 \Omega$ at 20 mA$)$					
Linear transmission range	Unipolar: -1 to +110\%		Bipolar: - 110 to $+110 \%$					
Ripple	$<10 \mathrm{mV}$ ms							
General data								
Transmission error	< 0.1 \% full scale							
Temperature coefficient)								
Zero/Span compensation (switchable)	$\pm 5 \%$ of measuring range							
Cut-off frequency -3 dB (switchable)	$8 \mathrm{kHz}, 100 \mathrm{~Hz}$							
Response time T_{99}	$100 \mathrm{\mu s}, 7 \mathrm{~ms}$							
Test voltage	$3 \mathrm{kV}, 50 \mathrm{~Hz}, 1 \mathrm{~min}$. Input against output against power supply							
Working voltage ${ }^{2)}$ (Basic insulation)	600 V AC/DC for overvoltage category II and contamination class 2 acc. to EN 61010-1							
Protection against dangerous body currents ${ }^{2}$	Protective Separation by reinforced insulation acc. to EN 61010-1 up to 300 V AC/DC for overvoltage category II and contamination class 2 between input and output and power supply.							
Ambient temperature	$\begin{aligned} & \text { Transport } \\ & \text { and storage }\end{aligned} \quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}(-40$ to +185							
Power supply	$24 \mathrm{VDC} \quad 9.6 \mathrm{~V} \ldots 31.2 \mathrm{~V}$, approx. 0.8 W							
EMC ${ }^{3}$	EN 61326-1							
MTBF	495 years acc. to SN 29500 (stationary continuous operating, average ambient temperature $40^{\circ} \mathrm{C}$)							
Construction	$6.2 \mathrm{~mm}\left(0.244^{\prime \prime}\right)$ housing, protection type: IP 20 mounting on 35 mm DIN rail acc. to EN 60715							
Connection terminals (see order information)	- Screw terminals (plus-minus clamp screws) - Cage clamp terminals (Push-In)							
1) Average $T C$ in specified operating temperature range 2) As far as relevant the standards and rules mentioned above are considered by development and production of our devices. In addition relevant assembly rules are to be considered by installation of our devices in other equipment. For applications with high working voltages, take measures to prevent accidental contact and make sure that there is sufficient distance or insulation between adjacent situated devices. 3) Minor deviations possible during interference								

Block Diagram

Order Information	
Shunt/mV Isolation Amplifier	Order No.
Screw terminals	DS 750000 S
Screw terminals, In-Rail-Bus	DS 75000 B
Push-In terminals	DS 75004 S
Push-In terminals, In-Rail-Bus	DS 75004 B

- Dimensions

Connection data

nnectio	Screw terminals	ush-In
Wire cross-section stranded ferruled	$0.5 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2}$ AWG 20-14	$0.5 \mathrm{~mm}^{2}-1.5 \mathrm{~mm}^{2}$ AWG 20-16
Wire cross-section solid wire	$0.5 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2}$ AWG 20-14	$0.5 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2}$ AWG 20-14
Stripped length	$8 \mathrm{~mm} / 0.3$ in	$8 \mathrm{~mm} / 0.3 \mathrm{in}$

IMITED WARRANTY

DRAGO Automation GmbH hereby warrants that the Product will be free from defects in materials or workmanship for a period of five (5) years from the date of delivery ("Limited Warranty"). This Limited Warranty is limited to repair or frst end-user of the Product. This Limited Warranty applies only if the Product:

1. is installed according to the instructions fumished by DRAGO,
2. is connected to a proper power supply;
. is not misused or abused; and accidental damage, modification or repair without the approval of DRAGO or damage done to the Product by anyone other than DRAGO
Delivery conditions are based upon the GENERAL CONDITIONS FOR THE SUPPLY OF PRODUUCTS AND SERVICES OF THE ELECTRICAL AND ELECTRONICS NDUSTRY", recommended by the Zentralverban Elektrotechnik- und Elektronikindustrie (ZVEI) e.V.

subet tange

DRAGO Automation GmbH
 Waldstrasse 86-90

13403 BERLIN
GERMANY
Phone: $\quad+49$ (0)30 409982 - 0 E-Mail: info@drago-automation.de Internet: www.drago-automation.de

