Modbus

Universal AI/DI Module DMB 96500

DMB 96500

- Before Startup

When operating the module, certain parts can carry
! dangerous voltage! lgnoring the warnings can lead to serious injury and/or cause damage!
The module should only be installed and put into operation by qualified staff. The staff must have
studied the warnings in these operating instructions studied the
thoroughly.
The module may not be put into operation if the housing is open.

In applications with high operating voltages sufficient distance and isolation as well as shock protection must be ensured.

Safe and trouble-free operation of this device can only be guaranteed if transport, storage and installation are carried out correctly and operation
and maintenance are carried out with care.

Appropriate safety measures against electrostatic discharge (ESD) should be taken during range
selection and assembly on the transmitter.

- Short description

The Modobus Universal AI/DI Module is intended to be used with Modbus RTU Interfacte. A subset of the most common settings is available via DIP switches.
The conversion result can be read over the Modbus RTU (RS485) interface. For further description of the Modbus Interface see: http://4ez.de/601
The 2 -way isolation guarantees reliable decoupling of the sensor circuit from the processing circuit and the power supply circuit.
Power supply and Modbus RTU can be connected via the connection terminals or via the In-Rail-Bus connector (see accessories)

- Configuration and startup

Configuration via DIP-switch and/or Modbus RTU
Modbus settings and sensor settings can be made independently via DIP-switch and/or Modbus RTU.

All settings can be made via the Modbus RTU interface. For this all switches of the corresponding DIP-switch must be switched off (PC

Attp://4ez.de/601.
Configure with DIP switch
Via DIP switch you can set many of the device parameter according
to the table below. Further settings can be made via Modbus RTU.

- Mounting and electrical connection

The isolation transmitter is mounted on standard 35 mm DIN rail

Terminal assignments			
1	RTD / R / Pot / TX+ / Namur+	5	Modbus A
2	RTD/R/Pot/U+/	6	Modbus B
3	RTD/R/Pot/TX-/I+/TC+/mV+	7	Supply +
4	RTD /R/Pot/U-/I-/TC - / mV-	8	Supply -

- Settings

Set the DIP switches as indicated in the following table

Factory settings: all switches in position OFF (PC Mode), the factory preset in PC-Mode is: Address 1,19200 Baud, Parity Even

DIP switch S2 •= ON							
	1	2	3	4	5	6	7
PC-Mode							
USER SETTING 1							
USER SETTING 2						-	
USER SETTING 4					-		
USER SETTING 5					\bullet		\bullet
USER SETTING 6					\bullet	-	
USER SETTING 7					-	-	\bullet
USER SETTING 8				-			
							\bullet
USER SETTING 10				-		-	
				-		-	-
USER SETTING 12				-	-		
USER SETTING 13				-	-		\bullet
USER SETTING 14				-	\bullet	-	
USER SETTING 15							
$\pm 1 \mathrm{~V}$			-				
$\pm 10 \mathrm{~V}$ mit TX			\bullet				-
$\pm 100 \mathrm{~V}$			\bullet			\bullet	
$\pm 300 \mathrm{~V}$			\bullet			-	\bullet
$\pm 1 \mathrm{~mA}$							
$\pm 20 \mathrm{~mA}$ mit TX			-	-			-
$\pm 100 \mathrm{~mA}$							
Shunt $\pm 50 \mathrm{mV}$			-	-	-		
Shunt $\pm 100 \mathrm{mV}$			\bullet	-	\bullet		\bullet
Shunt $\pm 500 \mathrm{mV}$							
Pt100							
Pt200							
Pt500							
Pt1000							
Pt2000							
Pt10000							
JPt50							
Ni100							
Ni120 (Tk6370)							
Ni200							
Ni500							
Ni1000							
Ni1000 (Tk6370)							
Ni1000 (Tk5000)							
TC sensor type A							
TC sensor type B							
TC sensor type C							
TC sensor type D							
TC sensor type E							
TC sensor type K							
TC sensor type L							
TC sensor type N							
TC sensor type R							
TC sensor type S							
TC sensor type T							

\bullet - ON

	1	2	3	4	5	6		7
$\mathrm{R} \leq 500 \Omega$	-							
$\mathrm{R} \leq 5 \mathrm{k} \Omega$	\bullet							\bullet
$\mathrm{R} \leq 20 \mathrm{k} \Omega$	\bullet					-		
$\mathrm{R} \leq 100 \mathrm{k} \Omega$	\bullet					-		-
Pot $\leq 500 \Omega$	-				\bullet			
Pot $\leq 5 \mathrm{k} \Omega$	\bullet				-			-
Pot $\leq 20 \mathrm{k} \Omega$	\bullet				-	-		
Pot $\leq 100 \mathrm{k} \Omega$	\bullet				-	-		-
KTY210, KTY230, KTY21-6, KTY23-6	-		-					
KTY21-5, KTY23-5	-		\bullet					-
KTY21-7, KTY23-7	-		\bullet			-		
KTY81-110, KTY81-120, KTY81-150, KTY82-110, KTY82-120, KTY82-150	-		-			-		
KTY81-121, KTY82-121	\bullet		\bullet		-			
KTY81-122, KTY82-122	\bullet		-		\bullet			\bullet
KTY83-110, KTY83-120, KTY83-150	-		-		-			
KTY83-121	\bullet		-		\bullet	-		-
KTY83-122	\bullet		\bullet	-				
KTY83-151	\bullet		\bullet	-				\bullet
KTY83-152	\bullet		-	-		-		
KTY84-130, KTY84-150	\bullet		\bullet	-		-		-
KTY84-151	-		-	-	-			
KTY84-152	\bullet		-	-	-			
KT100, KT110, KT130, KTY10-6, KTY10-62, KTY11-6, KTY13-6, KTY16-6, KTY19-6M, KTY19-6Z, ST-13, ST-15, ST-16, ST-20M, ST-20Z	-		-	-	-	-		
KTY10-5, KTY11-5, KTY13-5	\bullet		-	-	-	-		\bullet
KTY10-7, KTY11-7, KTY13-7	-	-						
KTY81-210, KTY81-220, KTY81-250, KTY82-210, KTY82-220, KTY82-250	-	-						
KTY81-221, KTY82-221	\bullet	-				-		
KTY81-222, KTY82-222	\bullet	-				-		-
KTY81-251, KTY82-251	\bullet	-			-			
KTY81-252, KTY82-252	\bullet	\bullet			\bullet			\bullet
KTY82-151	-	-			-	-		
KTY82-152	\bullet	-			-	-		-
F 1 Hz	\bullet	-		-				
F 10 Hz	\bullet	-		-				\bullet
F 100 Hz	-	-		-		-		
F 1 kHz	\bullet	\bullet		-		-		-
F 10 kHz	\bullet	-		-	-			
F 200 kHz	\bullet	-		-	-			\bullet
PWM 1 Hz	-	-	\bullet					
PWM 10 Hz	\bullet	-	\bullet					\bullet
PWM 100 Hz	\bullet	-	-			-		
PWM 1 kHz	\bullet	\bullet	\bullet					\bullet
WM								

DIP switch S2 $\bullet=0 \mathrm{~N}$						
$\begin{array}{\|c\|} \hline \text { RTD / KTY } \\ \text { / R Pot } \\ \hline \end{array}$	TC CJC	U/I	F/PWM	8	9	10
4-wire	internal	DC	NAMUR			
3 -wire	external Pt100 2-wire	AV (fast)	SN / Kontakt			
2-wire	external Pt100 3-wire	$\underset{\text { (normal) }}{\mathrm{AV}}$	S0		-	
	external Pt1000 2-wire	AV (slow)	PNP		-	-
	external Pt1000 3-wire	RMS (fast)	NPN	-		
	OFF	$\begin{gathered} \text { RMS } \\ \text { (normal) } \end{gathered}$	Logic 5V	-		
		RMS (slow)		-	-	

- LED indication

LED		Announcement
Green	continuous	Power LED
Green	flashing (1.5 Hz)	Input outside the measuring range
Green	flashing (5 Hz$)$	"Here I am"--mode active
Yellow	flashing	Modbus communication
Red	continuous	Device error
Red	flashing	Configuration error
Red	double flashing	Sensor break

Note: The red LED lights shortly at startup. This is not an error

- U/I Calculation options

RMS and Average (AV)
An RMS or an average calculation can be applied to the voltage, current und shunt voltage measurement modes. The
suffixes slow, normal and fast describe the time span ove which the input values are averaged (fast $=20 \mathrm{~ms}$, normal $=$ 100 ms , slow $=500 \mathrm{~ms}$). The RMS calculation is also
available with 3 different gate times (fast $=200 \mathrm{~ms}$ normal = available with 3 different gate times (fast $=200 \mathrm{~ms}$, normal $=$
500 ms , slow $=1000 \mathrm{~ms}$). A longer gate time results in a better noise reduction. However, this also increases the response

Dimensions

Connection	Screw termina	sh-In termin
Wire cross-section stranded ferruled	$\begin{aligned} & 0.5 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2} \\ & \text { AWG } 20-14 \end{aligned}$	$0.5 \mathrm{~mm}^{2}-1.5 \mathrm{~mm}^{2}$ AWG 20-16
Wire cross-section solid wire	$0.5 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2}$ AWG 20-14	$0.5 \mathrm{~mm}^{2}-2.5 \mathrm{~mm}^{2}$ AWG 20 - 14
Stripped length	$8 \mathrm{~mm} / 0.3 \mathrm{in}$	$8 \mathrm{~mm} / 0.3 \mathrm{in}$
Screw terminal torque	0.6 Nm	

Order Information	
Modbus Universal A//DI Module	Order No.
Screw terminals	DMB 96100 B
Push-In terminals	DMB 96104 B

IMITED WARRANTY

DRAGO Automation GmbH hereby warrants that the Product will be free from defects in materials or workmanship for period of five (5) years from the date of delivery ("Limited
Warranty"). This Limited Warranty is limited to repair replacement at DRAGO's option and is effective repair or first end-user of the Product. This Limited Warranty applies

1. is installed according to the instructions furnished by DRAGO
only
2. is connected to a proper power supply;
3. there is no evidence of tampering, mishandling, neglect accidental damage, modification or repair without th approval of DRAGO or damage done to the Product by anyone other than DRAGO.

Delivery conditions are based upon the GENERA CONDITIONS FOR THE SUPPLY OF PROD the "GENERA SERVICES OF THE ELECTRICAL AND ELECTRONICS NDUSTRY", recommended by the Zentralverban

Subiet to change

DRAGO Automation GmbH
 Waldstrasse 86-90
 13403 BERLIN

GERMANY
Phone: \quad +49 (0)30 409982 - 0 E-Mail: info@drago-automation.de Internet: www.drago-automation.de

